

Register		n	nathst	imes.	com
Number					

+2 MODEL EXAMINATION

PART III - MATHEMATICS

Tin	2 U	[ma]		[Engli	sh Version]	[May Manks , 200
1 111	ne : 3 H	irs. j		SE	CTION - A	[Max. Marks : 200
1	Note:	(i) (ii) (iii)	Each questi	s are compulsory. on carries one mark most suitable answe	x. r from the given four alter	natives. 40 x 1 = 40
1.	For a	Poiss	son distribution	n with parameter $\lambda = 0.2$	25 the value of the 2 nd moment	t about the origin is
	1) 0.2	25		2) 0.3125	3) 0.0625	4) 0.025
2.	If a =	cos (α - i sin α , b=	$=\cos \beta - i \sin \beta$, c= $\cos \beta$	γ - i sin γ then (a ² c ² - b ²) / ab	c is
		`	$(\alpha - \beta + \gamma) + i s$ $(\alpha - \beta + \gamma)$	$\sin 2(\alpha - \beta + \gamma)$	2) - 2 cos $(\alpha - \beta + \gamma)$ 4) 2 cos $(\alpha - \beta + \gamma)$	
3.	In wh		egion the curv	e $y^2(a+x) = x^2(3a-x)$ 2) $0 < x < 3a$	does not lie? 3) $x < -a$ and $x > 3a$	4) - $a < x < 3a$
4.	The a	angle	between the tv	wo tangents drawn from	m the point (-4, 4) to $y^2 = 16x$	is
	1) 45	5^0		2) 30°	3) 60°	4) 90°
5.	If					
	1) 22	λ		 √3λ 	3) √2λ	4) 1
6.	If u	=	, then	x + y	is equal to	
	1)	u		2) u	3) u	4) - u
7.	IfAi	s a sq	uare matrix of	order n then adj A i	is	
	1) A	$ \mathbf{A} ^2$		2) A ⁿ	3) A ⁿ⁻¹	4) A
8.	If f	(x) =		$-\infty < x < \infty$ is a p.d.	f. of a continuous random va	riable X, then the value of A is
	1) 16)		2) 8	3) 4	4) 1
9.	The I	Rolle'	s constant for t	the function $y = x^2$ on	[-2, 2] is	
	1)			2) 0	3) 2	4) -2
				1	Pins [®]	

10.				l to its amount. The differential
		to the above statment is (k	- '	
	1) $\frac{dp}{dt} = \frac{k}{p}$	$2) \frac{dp}{dt} = kt$	3) $\frac{dp}{dt} = kp$	4) $\frac{dp}{dt} = -kt$
11.	If ω is a cube root of un	ity then the value of (1- α	$(1 + \omega^2)^4 + (1 + \omega - \omega^2)^4$ is	
	1)0	2) 32	3) -16	4) -32
12.	If the magnitude of mom $\overrightarrow{i} + \overrightarrow{j}$ is $\sqrt{8}$ then the value	then about the point $\vec{j} + \vec{k}$ of ue of 'a' is	of a force $\vec{i} + a \vec{j} - \vec{k}$ acting	g through the point
	1) 1	2) 2	3) 3	4) 4
13.	Order and degree of the	e differential equation $\frac{d^2y}{dx^2}$	$+ x = \sqrt{y + \frac{dy}{dx}}$	
	1) 2,1	2) 1,2	3) 2, ½	4) 2, 2
14.	Cramer's rule is applicab	le only when		
	1) $\Delta \neq 0$	$2) \ \Delta = 0$	3) $\Delta = 0$, $\Delta x \neq 0$	•
15.	The point of intersection	of the lines $\overrightarrow{r} = (-i + 2j + 2i + 2i + 3i + 3i + 3i + 3i + 3i + 3i$	(+3k) + t $(-2i+j+k)$ an (-2i+j+k) an (-2i+j+k) an (-2i+j+k) an (-2i+j+k) an	d is
	1) (2,1,1)	2) (1,2,1)	3) (1,1,2)	4)(1,1,1)
16.	$\int_{0}^{\infty} x^{6} e^{\frac{-x}{2}} dx$		15	
	1) $\frac{\angle 6}{27}$	2) $\frac{\angle 6}{36}$	3) 2 ⁶ ∠6	4) 2 ⁷ ∠6
17.	The area between the elli	2) $\frac{\angle 6}{{}_{2}6}$ ipse $\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1$ and	its auxillary circle is	
	1) π b (a - b)	2) 2π a (a - b)	3) π a (a - b)	4) 2π b (a - b)
18.	The length of the semi-	major and the length of ser	mi minor axis of the ellipse	$\frac{x^2}{144} + \frac{y^2}{169} = 1$ are
	1) 26, 12	2) 13, 24	3) 12, 26	4) 13, 12
19.	The differential equation	n obtained by eliminating 'a	a' and 'b' from $y = ae^{3x} + be^{-3x}$	^{3x} is
	$1) \frac{d^2y}{dx^2} + ay = 0$	$2) \frac{d^2y}{dx^2} - 9y = 0$	$3) \frac{d^2y}{dx^2} - 9 \frac{dy}{dx} = 0$	$4) \frac{d^2y}{dx^2} + 9x = 0$
20.	Which of the following is	s incorrect regarding n th roc		
	1) the number of distinct	roots in n	2) the roots are in G.P. wi	th common ratio is $\frac{2\pi}{n}$
	3) the argument are in A.P. wi	ith common difference $\frac{2\pi}{n}$	4) product of the root is (), the sum of the root $is + 1$
21.	_	normal variable z is $\phi(z)$		
	1) $\frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2}Z^2}$	$2) \frac{1}{\sqrt{2\pi}} e^{-z^2}$	3) $\frac{1}{\sqrt{2\pi}}$ e $\frac{1}{2Z^2}$	4) $\frac{1}{\sqrt{2\pi}} e^{-1/2Z^2}$

22.	mathstimes.com If 2 cards are drawn from a well shuffled pack of 52 cards, the probability that they are of the same colours
	without replacement, is

1)
$$\frac{1}{2}$$

2)
$$\frac{26}{51}$$

3)
$$\frac{25}{51}$$

4)
$$\frac{25}{102}$$

The vector equation of the plane whose distance from the origin is p and perpendicular to a unit vector \hat{n} 23.

1)
$$\stackrel{\rightarrow}{r} \stackrel{\rightarrow}{.} \stackrel{\rightarrow}{n} = p$$

2)
$$\stackrel{\rightarrow}{r}$$
 $\stackrel{\wedge}{n} = q$

3)
$$\stackrel{\rightarrow}{r} \stackrel{\rightarrow}{x} \stackrel{\rightarrow}{n} = p$$
 4) $\stackrel{\rightarrow}{r} \stackrel{\wedge}{.} \stackrel{n}{n} = p$

4)
$$\stackrel{\rightarrow}{r}$$
 $\stackrel{\wedge}{n} = p$

24. The stationary point of
$$f(x) = x^{3/5} (4 - x)$$
 occurs at $x =$

1)
$$\frac{3}{2}$$

2)
$$\frac{2}{3}$$

25. If
$$Z_n = \cos \frac{n\pi}{3} + i \sin \frac{n\pi}{3}$$
 then $z_1 z_2 \dots z_6$ is

26. The P.I. of
$$(3D^2 + D - 14) y = 13e^{2x}$$
 is

1)
$$26x e^{2x}$$

2)
$$13x e^{2x}$$

3)
$$x e^{2x}$$

4)
$$x^2/2e^{2x}$$

27. The chord of contact of tangents from any point on the directrix of the ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 passes through its

28. If
$$f(a) = 2$$
; $f'(a) = 1$; $g(a) = -1$; $g'(a) = 2$ then the value of

$$\lim_{x \to a} \frac{g(x)f(a) - g(a)f(x)}{x - a}$$

30. The value of
$$\int_0^{\pi} \cos^3 2x \, dx$$
 is

1)
$$\frac{2}{3}$$

2)
$$\frac{1}{3}$$

4)
$$\frac{2\pi}{3}$$

31. The angle between the curves
$$y = e^{mx}$$
 and $y = e^{-mx}$ for $m > 1$ is

1)
$$\tan^{-1}$$
 $\left(\frac{2m}{m^2-1}\right)$

2)
$$\tan^{-1} \left(\frac{2m}{1 - m^2} \right)$$

1)
$$\tan^{-1} \left(\frac{2m}{m^2-1} \right)$$
 2) $\tan^{-1} \left(\frac{2m}{1-m^2} \right)$ 3) $\tan^{-1} \left(\frac{-2m}{1+m^2} \right)$ 4) $\tan^{-1} \left(\frac{2m}{m^2+1} \right)$

4)
$$\tan^{-1} \left(\frac{2m}{m^2+1} \right)$$

1)
$$\frac{1}{k^2}$$
 I

2)
$$\frac{1}{k^3}$$
 I

3)
$$\frac{1}{k}$$
 I

33. If
$$\begin{bmatrix} \overrightarrow{a} + \overrightarrow{b}, \overrightarrow{b} + \overrightarrow{c}, \overrightarrow{c} + \overrightarrow{a} \end{bmatrix} = 8$$
 then $\begin{bmatrix} \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} \end{bmatrix}$

1)4

2) 16

3)32

4) - 4

Which of the following is a tautology? 34.

1)
$$p \vee q$$

2)
$$p \wedge q$$

3)
$$p \vee \sim q$$

4)
$$p \wedge \sim p$$

A monoid becomes a group if it satisfies the 35.

- 1) closure axiom
- 2) associative axiom
- 3) identity axiom
- 4) inverse axiom

The value of [3] + [5] + [6] is 36.

1) [0]

- 2) [1]
- 3) [2]

The surface area of the solid of revolution of the region bounded by y = 2x, x = 0 and x = 2 about x-axis is 37.

- 1) $8\sqrt{5}\pi$
- 2) $2\sqrt{5}\pi$
- 3) √5π
- 4) $4\sqrt{5}\pi$

38. The co-ordinate of the vertices of the rectangular hyperbola xy = 16 are

In a system of 3 linear non-homogeneous equation with three unknowns, if $\Delta = 0$ and $\Delta_x = 0$, $\Delta_y \neq 0$ and $\Delta_z = 0$ 39. then the system has

- 1) unique solution
- 2) two solutions
- 3) infinitely many solutions 4) no solutions

Chord AB is a diameter of the sphere $| \overrightarrow{r} - (2i + j - 6k) | = \sqrt{18}$ with co-ordinate A as (3, 2, -2). 40. The co-ordinate of B is

SECTION - B

Note: (i) Answer any ten questions.

- (ii) Question No.55 in compulsory and choose any nine questions from the remaining.
- (iii) Each question carries six marks.

 $10 \times 6 = 60$

41. Solve the following non-homogeneous equations of three unknowns

$$x + y + 2z = 4$$

$$2x + 2y + 4z = 8$$

$$3x + 3y + 6z = 10$$

42. Find the rank of the matrix

$$\left[\begin{array}{cccc}
0 & 1 & 2 & 1 \\
2 & -3 & 0 & -1 \\
1 & 1 & -1 & 0
\end{array}\right]$$

43. a) If $\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) = (\overrightarrow{a} \times \overrightarrow{b}) \times \overrightarrow{c}$ then

Prove that
$$(c \times a) \times b = 0$$

- b) Find the distance between the parallel planes $\stackrel{\rightarrow}{r}$. $(-\stackrel{\rightarrow}{i}-\stackrel{\rightarrow}{j}+\stackrel{\rightarrow}{k})=3$ and $\stackrel{\rightarrow}{r}$. $(\stackrel{\rightarrow}{i}+\stackrel{\rightarrow}{j}-\stackrel{\rightarrow}{k})=5$
- 44. Show that the points A(1,2,3) B(3,-1,2), C(-2,3,1) and D(6,-4,2) are lying on the same plane.
- 45. Prove that the points representing the complex numbers 2i, 1+i, 4+4i and 3+5i on the Argand plane are the vertices of a rectangle.
- 46. Prove that the tangent at any point to the rectangular hyperbola forms with the asymptotes a triangle of constant area.
- 47. Obtain the Maclaurin's Series for : arc tan x or tan⁻¹ x
- 48. Find the intervals in which $f(x) = 2x^3 + x^2 20x$ is increasing and decreasing.
- 49. The time of swing T of a pendulum is given by $T = k\sqrt{l}$ where k is a constant. Determine the percentage error in the time of swing if the length of the pendulum l changes from 32.1 cm to 32.0 cm.
- 50. Evaluate $\int_{0}^{1} x e^{-4x} dx$
- 51. a) Solve: $(D^2 + 6D + 9)y = 0$
 - b) Form the differential equation from the following: $y = e^{2x} (A + Bx)$
- 52. Find the Mean and Variance for the probability density functions: $f(x) = \begin{cases} xe^{-x}, & \text{if } x > 0 \\ 0, & \text{otherwise} \end{cases}$
- 53. State and prove cancellation laws on group.
- 54. Show that $(p \land q) \rightarrow (p \lor q)$ is a tautology.
- 55. (a) The life of army shoes is normally distributed with mean 8 months and standard deviation 2 months. If 5000 pairs are issued, how many pairs would be expected to need replacement within 12 months.

(OR)

(b) Find the square root of (-8-6i)

SECTION - C

Note: (i) Answer any ten questions.

- (ii) Question No. 70 is compulsory and choose any nine questions from the remaining.
- (iii) Each question carries ten marks.

 $10 \times 10 = 100$

56. Investigate for what values of λ , μ the simultaneous equations x + y + z = 6, x + 2y + 3z = 10, $x + 2y + \lambda z = \mu$ have (i) no solution (ii) a unique solution and (iii) an infinite number of solutions.

- 57. Show that the lines $\frac{x-1}{1} = \frac{y+1}{-1} = \frac{z}{3}$ and $\frac{x-2}{1} = \frac{y-1}{2} = \frac{-z-1}{1}$ intersect and find their point of intersection.
- 58. Find the vector and cartesian equation of the plane containing the line.

$$\frac{x-2}{2} = \frac{y-2}{3} = \frac{z-1}{3}$$
 and parallel to the line $\frac{x+1}{3} = \frac{y-1}{2} = \frac{z+1}{1}$

59. P represents the variable complex number z, find the locus of P if

$$\operatorname{Re}\left(\frac{z+1}{z+i}\right) = 1$$

- 60. The arch of a bridge is in the shape of a semi-ellipse having a horizontal span of 40 ft and 16ft high at the centre. How high is the arch, 9ft from the right or left of the centre.
- 61. Find the equation of the rectangular hyperbola which has for one of its asymptotes the line x + 2y 5 = 0 and passes through the points (6, 0) and (-3, 0).
- 62. A missile fired from ground level rises x metres vertically upwards in t seconds and $x = 100t \frac{25}{2}t^2$. Find (i) the initial velocity of the missile, (ii) the time when the height of the missile is a maximum (iii) the maximum height reached and (iv) the velocity with which the missile strikes the ground.
- 63. A farmer has 2400 feet of fencing and want to fence of a rectangular field that borders a straight river. He needs no fence along the river. What are the dimensions of the field that has the largest area?
- 64. Using Euler's theorem, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{1}{2} \tan u$ if $u = \sin^{-1} \left(\frac{x y}{\sqrt{x + \sqrt{y}}} \right)$
- 65. Compute the area between the curve $y = \sin x$ and $y = \cos x$ and the lines x = 0 and $x = \pi$.
- 66. Prove that the curved surface area of a sphere of radius r intercepted between two parallel planes at a distance a and b from the centre of the sphere is $2\pi r$ (b a) and hence deduct the surface area of the sphere. (b > a)
- 67. Solve $(1 x^3) \frac{dy}{dx} 3x^2 y = \sec^2 x$.
- 68. Let G be the set of all rational numbers except 1 and * be defined on G by a * b = a + b ab for all a, $b \in G$. Show that (G, *) is an infinite abelian group.
- 69. The number of accidents in a year involving taxi drivers in a city follows a Poisson distribution with mean equal to 3. Out of 1000 taxi drivers find approximately the number of drivers with (i) no accident in a year (ii) more than 3 accidents in a year [$e^{-3} = 0.0498$]
- 70. a) In a certain chemical reaction the rate of conversion of a substance at time t is proportional to the quantity of the substance still untransformed at that instant. At the end of one hour, 60 grams remain and the end of 4 hours 21 grams. How many grams of the substance was there initially?

b) Find the eccentricity, centre, foci and vertices of the hyperbola:

$$x^2 - 3y^2 + 6x + 6y + 18 = 0$$