PART III - MATHEMATICS
 [English Version]

Time: 3 Hrs.]
[Max. Marks : 200

SECTION-A

Note : (i) All questions are compulsory.
(ii) Each question carries one mark.
(iii) Choose the most suitable answer from the given four alternatives.

1. If $\overrightarrow{\mathrm{p}}, \overrightarrow{\mathrm{q}}$ and $\overrightarrow{\mathrm{p}}+\overrightarrow{\mathrm{q}}$ are vectors of magniture λ then the magnitude of $|\overrightarrow{\mathrm{p}}-\overrightarrow{\mathrm{q}}|$ is
1) 2λ
2) $\sqrt{ } 3 \lambda$
3) $\sqrt{ } 2 \lambda$
4) 1
2. If $u=\frac{1}{\sqrt{x^{2}+y^{2}}}$, then $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y} \quad$ is equal to
1) $\frac{1}{2} u$
2) u
3) $\frac{3}{2} u$
4) $-u$
3. If A is a square matrix of order n then $|\operatorname{adj} A|$ is
1) $|A|^{2}$
2) $|A|^{n}$
3) $|A|^{n-1}$
4) $|\mathrm{A}|$
4. If $f(x)=\frac{\mathrm{A}}{\pi} \frac{1}{16+\mathrm{x}^{2}}-\infty<\mathrm{x}<\infty$ is a p.d.f. of a continuous random variable X , then the value of A is
1) 16
2) 8
3) 4
4) 1
5. The Rolle's constant for the function $y=x^{2}$ on $[-2,2]$ is
1) $\frac{2 \sqrt{ } 3}{3}$
2) 0
3) 2
4) -2
6. A monoid becomes a group if it satisfies the
1) closure axiom
2) associative axiom
3) identity axiom
4) inverse axiom
7. The value of $[3]+{ }_{11}\left([5]+{ }_{11}[6]\right)$ is
1) $[0]$
2) [1]
3) $[2]$
4) $[3]$
8. The surface area of the solid of revolution of the region bounded by $y=2 x, x=0$ and $x=2$ about x-axis is
1) $8 \sqrt{ } 5 \pi$
2) $2 \sqrt{ } 5 \pi$
3) $\sqrt{ } 5 \pi$
4) $4 \sqrt{ } 5 \pi$
9. The co-ordinate of the vertices of the rectangular hyperbola $\mathrm{xy}=16$ are
1) $(4,4),(-4,-4)$
2) $(2,8),(-2,-8)$
3) $(4,0),(-4,0)$
4) $(8,0),(-8,0)$

10. In a system of 3 linear non-homogeneous equation with three unknowns, if $\Delta=0$ and $\Delta_{x}=0$, Andatasindestçonn then the system is
1) unique solution
2) two solutions
3) infinitely many solutions
4) no solutions
11. Chord $A B$ is a diameter of the sphere $|\vec{r}-(2 \vec{i}+\vec{j}-6 \vec{k})|=\sqrt{ } 18$ with co-ordinate A as $(3,2,-2)$. The co-ordinate of B is
1) $(1,0,10)$
2) $(-1,0,-10)$
3) $(-1,0,10)$
4) $(1,0,-10)$
12. Which of the following is incorrect regarding $\mathrm{n}^{\text {th }}$ roots of unity?
1) the number of distinct roots in n
2) the roots are in G.P. with common ratio is $\frac{2 \pi}{n}$
3) the argument are inA.P. with common difference $\frac{2 \pi}{n}$
4) product of the root is 0 , the sum of the root is +1
13. If p.d.f. of the standard normal variable z is $\phi(\mathrm{z})$
1) $\frac{1}{\sqrt{2 \pi \sigma}} e^{-1 / 2 Z^{2}}$
2) $\frac{1}{\sqrt{2} \pi} e^{-Z^{2}}$
3) $\frac{1}{\sqrt{2 \pi}} e^{1 / 2 Z^{2}}$
4) $\frac{1}{\sqrt{2 \pi}} e^{-1 / 2^{z^{2}}}$
14. If 2cards are drawn from a well shuffled pack of 52 cards, the probability that they are of the same colours without replacement, is
1) $\frac{1}{2}$
2) $\frac{26}{51}$
3) $\frac{25}{51}$
4) $\frac{25}{102}$
15. The vector equation of the plane whose distance from the origin is p and perpendicular to a unit vector \hat{n}
1) $\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{n}}=\mathrm{p}$
2) $\vec{r} \cdot \hat{n}=q$
3) $\vec{r} \times \vec{n}=p$
4) $\vec{r} \cdot \hat{n}=p$
16. The stationary point of $f(x)=x^{3 / 5}(4-x)$ occures at $x=$
1) $\frac{3}{2}$
2) $\frac{2}{3}$
3) 0
4) 4
17. If $Z_{n}=\cos \frac{n \pi}{3}+i \sin \frac{n \pi}{3}$ then $Z_{1} z_{2} \ldots \ldots z_{6}$ is
1) 1
2) -1
3) i
4) -i
18. The amount present in a ratio active element disintegrates at a rate proportional to its amount. The differential equation corresponding to the above statment is (k is negative)
1) $\frac{\mathrm{dp}}{\mathrm{dt}}=\frac{\mathrm{k}}{\mathrm{p}}$
2) $\frac{\mathrm{dp}}{\mathrm{dt}}=k t$
3) $\frac{\mathrm{dp}}{\mathrm{dt}}=\mathrm{kp}$
4) $\frac{\mathrm{dp}}{\mathrm{dt}}=-\mathrm{kt}$
19. If ω is a cube root of unity then the value of $\left(1-\omega+\omega^{2}\right)^{4}+\left(1+\omega-\omega^{2}\right)^{4}$ is
1) 0
2) 32
3) -16
4) -32
20. If the magnitude of moment about the point $\vec{j}+\vec{k}$ of a force $\vec{i}+a \vec{j}-\vec{k}$ acting through the point $\vec{i}+\vec{j}$ is $\sqrt{ } 8$ then the value of ' a ' is
1) 1
2) 2
3) 3
4) 4
21. Order and degree of the differential equation $\frac{d^{2} y}{d x^{2}}+x=\sqrt{y+\frac{d y}{d x}}$
1) 2,1
2) 1,2
3) $2,1 / 2$
4) 2,2
22. Cramer's rule is applicable only when
1) $\Delta \neq 0$
2) $\Delta=0$
3) $\Delta=0, \Delta x \neq 0$
4) $\Delta x=\Delta y=\Delta z=0$
23. The point of intersection of the lines $\vec{r}=(-\vec{i}+2 \vec{j}+3 \vec{k})+t(-2 \vec{i}+\vec{j}+\vec{k})$ and $\overrightarrow{\mathrm{r}}=(2 \mathrm{i}+3 \overrightarrow{\mathrm{j}}+\overrightarrow{5 \mathrm{k}})+\mathrm{s}(\overrightarrow{\mathrm{i}}+\overrightarrow{\mathrm{j}}+3 \overrightarrow{\mathrm{k}})$ is
1) $(2,1,1)$
2) $(1,2,1)$
3) $(1,1,2)$
4) $(1,1,1)$
24. $\int_{0}^{\infty} x^{6} e^{\frac{-x}{2}} d x$
1) $\frac{\angle 6}{{ }_{2}^{7}}$
2) $\frac{\angle 6}{{ }_{2} 6}$
3) $2^{6} \angle 6$
4) $2^{7} \angle 6$
25. The P.I. of $\left(3 D^{2}+D-14\right) y=13 e^{2 x}$ is
1) $26 x e^{2 x}$
2) $13 x e^{2 x}$
3) $x e^{2 x}$
4) $x^{2} / 2 e^{2 x}$
26. The chord of contact of tangents from any point on the directrix of the ellipse $\frac{x^{2}}{a^{2}} \quad \frac{y^{2}}{b^{2}}=1$ passes through its
1) vertex
2) focus
3) directrix
4) latus rectum
27. If $f(\mathrm{a})=2 ; f^{\prime}(\mathrm{a})=1 ; \mathrm{g}(\mathrm{a})=-1 ; \mathrm{g}^{\prime}(\mathrm{a})=2$ then the value of

$$
\lim _{\mathrm{x} \rightarrow \mathrm{a}} \frac{\mathrm{~g}(\mathrm{x}) f(\mathrm{a})-\mathrm{g}(\mathrm{a}) f(\mathrm{x})}{\mathrm{x}-\mathrm{a}}
$$

1) 5
2) -5
3) 3
4) -3
28. \div is not a binary operation on
1) N
2) R
3) Z
4) $\mathrm{C}-\{0\}$
29. The value of $\int_{0}^{\pi / 4} \cos ^{3} 2 x d x$ is
1) $\frac{2}{3}$
2) $\frac{1}{3}$
3) 0
4) $\frac{2 \pi}{3}$
30. The angle between the curves $y=e^{m x}$ and $y=e^{-m x}$ for $m>1$ is
1) $\tan ^{-1} \quad\left(\frac{2 m}{m^{2}-1}\right)$
2) $\tan ^{-1}\left(\frac{2 m}{1-m^{2}}\right)$
3) $\tan ^{-1}\left(\frac{-2 m}{1+m^{2}}\right)$
4) $\tan ^{-1}\left(\frac{2 m}{m^{2}+1}\right)$
31. If A is a scalar matrix with scalar $\mathrm{k} \neq 0$, of order 3 , then A^{-1} is
1) $\frac{1}{\mathrm{k}^{2}} \mathrm{I}$
2) $\frac{1}{k^{3}} \mathrm{I}$
3) $\frac{1}{k} I$
4) kI

32. If $[\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}]=8$ then $[\vec{a}, \vec{b}, \vec{c}]$
1) 4
2) 16
3) 32
4) -4
33. Which of the following is a tautology?
1) $p \vee q$
2) $p \wedge q$
3) $p \vee \sim q$
4) $p \wedge \sim p$
34. For a Poisson distribution with parameter $\lambda=0.25$ the value of the $2^{\text {nd }}$ moment about the origin is
1) 0.25
2) 0.3125
3) 0.0625
4) 0.025
35. If $\mathrm{a}=\cos \alpha-\mathrm{i} \sin \alpha, \mathrm{b}=\cos \beta-\mathrm{i} \sin \beta, \mathrm{c}=\cos \gamma-\mathrm{i} \sin \gamma$ then $\left(\mathrm{a}^{2} \mathrm{c}^{2}-\mathrm{b}^{2}\right) / \mathrm{abc}$ is
1) $\cos 2(\alpha-\beta+\gamma)+i \sin 2(\alpha-\beta+\gamma)$
2) $-2 \cos (\alpha-\beta+\gamma)$
3) $-2 \mathrm{i} \sin (\alpha-\beta+\gamma)$
4) $2 \cos (\alpha-\beta+\gamma)$
36. In which region the curve $y^{2}(a+x)=x^{2}(3 a-x)$ does not lie ?
1) $x>0$
2) $0<x<3 a$
3) $x<-a$ and $x>3 a$
4) $-\mathrm{a}<\mathrm{x}<3 \mathrm{a}$
37. The angle between the two tangents drawn from the point $(-4,4)$ to $y^{2}=16 x$ is
1) 45°
2) 30°
3) 60°
4) 90°
38. The area between the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and its auxillary circle is
1) $\pi b(a-b)$
2) $2 \pi a(a-b)$
3) $\pi a(a-b)$
4) $2 \pi b(a-b)$
39. The length of the semi-major and the length of semi minor axis of the elliip $\frac{x^{2}}{\rho^{2} 44} \quad+\frac{y^{2}}{169}=1$ are
1) 26,12
2) 13, 24
3) 12,26
4) 13,12
40. The differential equation obtained by eliminating 'a' and ' b ' from $y=a e^{3 x}+b e^{-3 x}$ is
1) $\frac{d^{2} y}{d x^{2}}+a y=0$
2) $\frac{d^{2} y}{d x^{2}}-9 y=0$
3) $\frac{d^{2} y}{d x^{2}}-9 \frac{d y}{d x}=0$
4) $\frac{d^{2} y}{d x^{2}}+9 x=0$

SECTION - B

Note : (i) Answer any ten questions.

(ii) Question No. 55 in compulsory and choose any nine questions from the remaining.
(iii) Each question carries six marks.

$$
10 \times 6=60
$$

41. Solve the following non-homogeneous equations of three unknowns

$$
\begin{array}{r}
x+y+2 z=4 \\
2 x+2 y+4 z=8 \\
3 x+3 y+6 z=10
\end{array}
$$

42. Find the rank of the matrix

$$
\left[\begin{array}{cccc}
0 & 1 & 2 & 1 \\
2 & -3 & 0 & -1 \\
1 & 1 & -1 & 0
\end{array}\right]
$$

43. a) If $\overrightarrow{\mathrm{a}} \times(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}})=(\overrightarrow{\mathrm{a} \times \vec{b}}) \times \overrightarrow{\mathrm{c}}$ then

Prove that $\left(\begin{array}{lll}\vec{c} \times \vec{a})\end{array} \quad \vec{b}=\overrightarrow{0}\right.$
b) Find the distance between the parallel planes $\overrightarrow{\mathrm{r}} \cdot(-\overrightarrow{\mathrm{i}}-\overrightarrow{\mathrm{j}}+\overrightarrow{\mathrm{k}})=3$ and $\overrightarrow{\mathrm{r}} \cdot(\overrightarrow{\mathrm{i}}+\overrightarrow{\mathrm{j}}-\overrightarrow{\mathrm{k}})=5$
44. Show that the points $A(1,2,3) B(3,-1,2), C(-2,3,1)$ and $D(6,-4,2)$ are lying on the same plane.
45. Prove that the points representing the complex numbers $2 \mathrm{i}, 1+\mathrm{i}, 4+4 \mathrm{i}$ and $3+5 \mathrm{i}$ on the Argand plane are the vertices of a rectangle.
46. Prove that the tangent at any point to the rectangular hyperbola forms with the asymptotes a triangle of constant area.
47. Obtain the Maclaurin's Series for : arctan x or $\tan ^{-1} x$
48. Find the intervals in which $f(x)=2 x^{3}+x^{2}-20 x$ is increasing and decreasing.
49. The time of swing T of a pendulum is given by $\mathrm{T}=k \sqrt{ } l$ where k is a constant. Determine the percentage error in the time of swing if the length of the pendulum 1 changes from 32.1 cm to 32.0 cm .
50. Evaluate : $\int_{0}^{1} \mathrm{x} \mathrm{e}^{-4 \mathrm{x}} \mathrm{dx}$
51. a) Solve : $\left(D^{2}+6 D+9\right) y=0$
b) Form the differential equation from the following: $y=e^{2 x}(A+B x)$
52. Find the Mean and Variance for the probability density functions: $f(\mathrm{x})= \begin{cases}\mathrm{xe}^{-\mathrm{x}}, & \text { if } \mathrm{x}>0 \\ 0, & \text { otherwise }\end{cases}$
53. State and prove cancellation laws on group.
54. Show that $(\mathrm{p} \wedge q) \rightarrow(\mathrm{p} \vee \mathrm{q})$ is a tautology.
55. (a) The life of army shoes is normally distributed with mean 8 months and standard deviation 2 months. If 5000 pairs are issued, how many pairs would be expected to need replacement within 12 months.

(OR)

(b) Find the square root of $(-8-6 i)$

SECTION - C

Note: (i) Answer any ten questions.
(ii) Question No. 70 is compulsory and choose any nine questions from the remaining.
(iii) Each question carries ten marks.
$10 \times 10=100$
56. Investigate for what values of λ, μ the simultaneus equations $x+y+z=6, x+2 y+3 z=10, x+2 y+\lambda z=\mu$ have (i) no solution (ii) a unique solution and (iii) an infinite number of solutions.
57. Show that the lines $\frac{x-1}{1}=\frac{y+1}{-1}=\frac{z}{3}$ and $\frac{x-2}{1}=\frac{y-1}{2}=\frac{-z-1}{1}$ intersect and find their point of intersection.
58. Find the vector and cartesian equation of the plane containing the line.

$$
\frac{x-2}{2}=\frac{y-2}{3}=\frac{z-1}{3} \text { and parallel to the line } \frac{x+1}{3}=\frac{y-1}{2}=\frac{z+1}{1}
$$

59. P represents the variable complex number z, find the locus of P if $\operatorname{Re}\left(\frac{z+1}{z+i}\right)=1$
60. The arch of a bridge is in the shape of a semi-ellipse having a horizontal span of 40 ft and 16 ft high at the centre. How high is the arch, 9 ft from the right or left of the centre.
61. Find the equation of the rectangular hyperbola which has for one of its asymptotes the line $x+2 y-5=0$ and passes through the points $(6,0)$ and $(-3,0)$.
62. A missile fired from ground level rises x metres vertically upwards in t seconds and $x=100 t-\frac{25}{2} t^{2}$. Find (i) the initial velocity of the missile, (ii) the time when the height of the missile is a maximum (iii) the maximum height reached and (iv) the velocity with which the missile strikes the ground.
63. A farmer has 2400 feet of fencing and want to fence of a rectangular field that borders a straight river. He needs no fence along the river. What are the dimensions of the field that has the largest area?
64. Using Euler's theorem, prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\frac{1}{2} \tan u$ if $u=\sin ^{-1}\left(\frac{x-y}{\sqrt{x}+\sqrt{y}}\right)$
65. Compute the area between the curve $y=\sin x$ and $y=\cos x$ and the lines $x=0$ and $x=\pi$.
66. Prove that the curved surface area of a sphere of radius r intercepted between two parallel planes at a distance a and b from the centre of the sphere is $2 \pi r(b-a)$ and hence deduct the surface area of the sphere. $(b>a)$
67. Solve $\left(1-x^{3}\right) \frac{d y}{d x}-3 x^{2} y=\sec ^{2} x$.
68. Let G be the set of all rational numbers except 1 and $*$ be defined on G by $a * b=a+b-a b$ for $a l l a, b \in G$. Show that ($\mathrm{G}, *$) is an infinite abelian group.
69. The number of accidents in a year involving taxi drivers in a city follows a Poisson distribution with mean equal to 3. Out of 1000 taxi drivers find approximately the number of drivers with (i) no accident in a year (ii) more than 3 accidents in a year [$\mathrm{e}^{-3}=0.0498$]
70. a) In a certain chemical reaction the rate of conversion of a substance at time t is proportional to the quantity of the substance still untransformed at that instant. At the end of one hour, 60 grams remain and the end of 4 hours 21 grams. How many grams of the substance was there initially?

(OR)

b) Find the eccentricity, centre, foci and vertices of the hyperbola:

$$
x^{2}-3 y^{2}+6 x+6 y+18=0
$$

